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The two-fluid dynamics of plasmas with force free electrons under the quasi-neutral 
condition can be described by the one-thud magnetohydrodynamic equations with addition of 
a single term, the Hall term, to the field induction equation. This algorithm is implemented in 
a magnetohydrodynamic particle code to represent some aspects of electron-ion plasmas in 
the Lagrangian framework with a fixed uniform background grid. The code sustains, for 
example, Alfven-ion cyclotron waves and whistier waves, as is demonstrated by the 
dispersion, polarization and propagation of these waves. 

I. INTRODUCTION 

The study of slow-time-scale phenomena in plasma physics compared with the 
plasma or gyro periods, such as magnetohydrodynamic stability, drift waves, 
diffusion and energy transport, is essential to fusion plasma physics among other 
disciplines. It is, therefore, of importance to generate numerical algorithms which can 
accommodate simulations of such phenomena. To investigate these slow processes via 
computer simulation within reasonable accuracy and practical means requires 
techniques which dispense with high-frequency phenomena without compromising the 
validity of the physics at lower frequencies. 

One recent approach to achieve this goal has been to introduce quasi-neutrality in 
finite-size particle codes of electrostatic or magnetostatic denominations. Okuda et al. 
[ 1 ] eliminated the high-frequency space charge oscillations from an electrostatic code 
by having the adiabatic electrons follow the ion density fluctuations, unmodified in 
the process, so as to represent Debye shielding and preserve quasi-neutrality. This 
approach may be called a renormalization method. On the magnetostatic front, 
Hewett and Nielson [2] have constructed a quasi-neutral hybrid model, where the 
ions are represented by the usual particle-in-cell technique. The electrons, however, 
are considered to be a neutralizing thermal fluid retaining some inertial properties. 
The fields are calculated in the nonradiative Darwin limit, and the electrostatic field 
is obtained by solving the quasi-neutral Poisson equation. Byers et al. [3] have 
developed an algorithm where Maxwell’s equations are also solved in the limits of the 
magnetostatic approximation and quasi-neutrality. This model treats electrons as a 
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massless fluid and ions as particles and examines phenomena at frequencies lower 
than the lower hybrid frequency where electron inertia can be neglected altogether. 

The other well-established approach in keeping with lengthening the time step as 
much as possible and simulating long-time-scale phenomena has been to solve for the 
plasma evolution in the magnetohydrodynamics approximation [4]. The one-fluid 
codes most commonly used do not make any distinction between electrons and ions 
and treat the plasma through its mass density, fluid density and current density. So 
doing, one can automatically dispense with such fast-time-scale phenomena as 
electron plasma oscillations and gyro oscillations; at the same time, one loses most of 
the electron physics. Resorting to a two-fluid code entails pushing the electrons on 
the time scale of the plasma or gyro frequency and goes against the purpose of 
lengthening the time step. 

We present here an algorithm which is a simple modification of the recently 
developed magnetohydrodynamics code [5], where elements of the fluid are 
represented by finite-size particles. To enrich the physics involved, it is essential to 
treat the electron dynamics and avoid pushing on the fast electron time scale. The 
adoption of a force free electron dynamics algorithm introduces a Hall term in the 
magnetic field updating equation. The addition of the Hall term means that the 
particles now represent an ion fluid. With this code, Alfven-ion cyclotron waves and 
whistler waves, for example, are incorporated. 

The organization of the paper is as follows. A description of the algorithm is given 
in Section II. Section III is devoted to tests of the model with respect to dispersion 
relation, propagation and polarization diagnostics, while the final section draws con- 
clusions. 

II. ALGORITHM FOR QUASI-NEUTRALMAGNETOHYDRODYNAMICS WITH 
FORCE FREE ELECTRONS 

To facilitate the description of our model for the electron-ion 
magnetohydrodynamic particle code, let us briefly review the algorithm of the one- 
fluid magnetohydrodynamic particle code 151. In this code, the particle quantities, 
such as position and momentum, are pushed in a Lagrangian way, while the magnetic 
fields are advanced in an Eulerian manner. The position of a particle is found by 
dr,(t)/dt = vi(t). In the ideal one-fluid MHD description of a plasma, the equation of 
motion for each “particle” is 

U’Vj(t)/dt = - (l/P) VP - (1/8~P) VB* + (1/4nP)V (BB), 

where p is the mass density of the fluid averaged over electrons and ions. The left- 
hand side of Eq. (1) is the total derivative of thejth particle velocity while the right- 
hand side only involves macroscopic quantities defined at the mesh points of the tixed 
background grid, The density and velocity of the fluid are given by nearest grid point 
interpolation of the respective particle quantities in a cell, i.e., 
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v&)= t: Vi/C 1. 
jen jen 

(2) 

(3) 

The quantities n, and ug are the fluid density and velocity andf(r - rj) is the form 
factor of the particle, typically a Gaussian one, while the denominator on the right- 
hand side of Eq. (3) is the number of particles in a cell. The magnetic fields are 
updated at the mesh points using the fluid velocity: 

~B/c% = V x (v, x B). (4) 

The integration in time of Eq. (4) is carried out by using the conservative Lax 
method with a time step close to the stability limit so as to avoid excessive numerical 
diffusion [6 J. 

This ideal magnetohydrodynamic algorithm has dispensed with any distinction 
between electrons and ions. All the physics is treated through the mass density of the 
fluid p = (mn, + Mn,)/(M + m), its flow velocity u = (mu, + Mvi)/(m + M), and the 
current density J = - en, v, + eni vi. To enrich the physics involved, it is essential to 
treat the electron dynamics. To avoid integrating on the fast electron time scale, we 
neglect the electron acceleration term which is proportional to the electron mass: the 
electrons are so light that they instantaneously adjust their velocities to the value 
determined by the equation of electron motion given by 

e E + 3 x B - mv,,(vi - ve) + $ V P, = 0, (5) 
e 

where vei is the electron-ion collision frequency, n, the electron density and P, the 
electron pressure tensor. On the other hand, the equation of motion for ions may be 
written as 

(6) 

where M is the ion mass, vi the ion velocity, n, (=n) the ion density and Pi the ion 
pressure tensor. Substituting Eq. (5) into the electric field of Eq. (6), we obtain 

Assuming quasi-neutrality (n, g ni = n), therefore, J g ne(v, - ve), and neglecting the 
displacement current in Maxwell’s equation, we derive the equation of motion for ions 
as 

/II + = - &B x (V x B) - V (Pi + P,), (8) 
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where p is now the ion mass density. To advance the magnetic field, Faraday’s law 
with Eq. (5) is employed to give 

l3B 
-=cvx 
at 

+xB+ &Bx(VXB)- aVx,B+-$V.P, . 1 (9) 

Equations (8) and (9) constitute the bases for our model. The second term on the 
right-hand side of Eq. (9) is just the Hall term. This term has originated from 
consideration of the electron dynamics through Eq. (5). The velocity vi appearing in 
Eq. (8) is taken to be the ion fluid velocity as per Eq. (3). If the plasma is 
collisionless (rei = 0), the third term on the right-hand side of Eq. (6) and the third 
term on the right-hand side of Eq. (9) drop out. As was the case with the one-fluid 
magnetohydrodynamic algorithm, closure of the chain equations of velocity moments 
is accomplished if one assumes a certain relation of the pressure term to, say, the 
density. In the present case, on top of such an assumption, a relation between P, and 
Pi has to be assumed and instituted. Then, the only new term added in Eqs. (8) and 
(9) is the Hall term in Eq. (9) in comparison with the one-fluid scheme. The current 
need not be calculated and the algorithm involves essentially the same steps as the 
one-fluid (ideal) magnetohydrodynamic scheme. The difference between the present 
algorithm and the quasi-neutral magnetostatic particle algorithm of Byers et al. [3] is 
that this code is faster and dispenses with the ion velocity space information, since 
this is a fluid code; further, no matrix inversion is required in our code for the ion 
velocity integration. 

III. TESTS OF THE MODEL 

The algorithm described in Section II has been implemented and tested numerically 
and physically. Physical tests include simulation runs on the code of a thermal 
plasma as well as of a plasma with launched waves. We check the dispersion 
relations of the waves obtained from the thermal simulation runs against the 
theoretical dispersion relation. As a second category of check, phase diagnostics on a 
particular Fourier component of the fields obtained from simulation runs with 
launched waves are performed and analyzed in light of the theoretical predictions. 
The phase diagnostics can determine the propagation direction and polarization as 
well as the frequency of the waves. 

Dispersion Relation 

Let us analyze the linear dispersion relation sustained by Eqs. (8) and (9). 
Neglecting terms involving collisions and pressure for simplicity, we linearize and 
Fourier transform Eqs. (8) and (9) to obtain 

-iw 6B = ik x (v x B,) + ak x [(k x 6B) x B,], (10) 

-km = (l/p)[i(k x 2%) x B,], (11) 
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where a = c/4nen, 6B and v represent respectively the perturbed magnetic field and 
ion fluid velocities, while B, stands for the external zeroth order magnetic field. For 
modes with wavenumber parallel to B,, which correspond to linearly polarized 
Alfven waves in ideal magnetohydrodynamics, we obtain, from Eqs. (10) and (1 l), 

(w’ - k2v:) 6B - iaw(k B,)(k x 8I3) = 0, (12) 

with the Alfven speed v, = B,/(4nnM) . q I” E uation (12) yields a dispersion relation 

~ = f [(k2V:/2Ri) l kV,( 1 + k2V:/4~n2)“‘], (13) 

where Ri z eB,/Mc and aB, = vvQi. The + (-) sign in front of the square bracket 
in Eq. (13) indicates the forward (backward) propagation and the + (-) sign in front 
of the second term in the square bracket in Eq. (13) corresponds to the right (left) 
polarization mode. In the small wavenumber limit (kvA/Qi < l), Eq. (13) becomes 

w ” kv,(l f kv,/2Ri), (14) 

when forward propagation is retained. In the other limit of large wavenumber 
(kvA/Ri $ l), Eq. (13) reduces to 

orRi, k2v$2i. (15) 

The first root is that of the ion cyclotron wave and the second that of the whistler. 
For modes with wavenumber perpendicular to B,, the magnetosonic branch is 
recovered from Eqs. (9) and (lo), as the Hall term has no effect in this case. 

To verify the dispersion relation, a 2f D (two spatial and three velocity and field 
dimensions) version of the code is employed in the simulations. The system size is 
typically 644 X 164 grids (with A the unit grid spacing) with four particles in a cell. 
The external magnetic field B, is along the x-axis and its strength is such that 
v, = 3c,, c, being the sound speed. The parameter a is such that Qi = 3c,/A. Small 
random velocities (0.1 cS) are given in all three directions at t = 0 (the thermal run). 
The time step is chosen to At = 0.15 c;‘A throughout; time autocorrelations of the 
induced magnetic fields in the y and z directions are then taken numerically over the 
whole extent of the runs, typically 200 c; ‘A. The frequencies are obtained from peaks 
in the power spectral density for each (k, # 0, k, = 0) mode. 

The simulation. dispersion relation is plotted in Fig. 1. The lower solid curve 
indicates the Alfven-ion cyclotron branch obtained from the theoretical dispersion 
relation, Eq. (13), while the upper curve follows the theoretical whistler branch. The 
code reproduces the correct behavior in the long wavelength limit. The whistler (solid 
dots) and Alfven ion-cyclotron branches (crosses) are clearly separated. The 
theoretical frequency separation between the two branches in the long wavelength 
regime is 

Aw = kv,(kv,/Q). (16) 
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FIG. 1. Dispersion relation. The solid curves are obtained from theory with uA = 3.0 c, and 
Qi = 3.0 c,A-‘. The dashed lines represent w = ku,. The solid dots fall on the whistler branch while the 
crosses lie on the ion-cyclotron branch. 

The simulation value for Aw is within 5% of that calculated by Eq. (16). As expected, 
the magnetosonic branch was unaffected by the Hall term in the simulation. In the 
short wavelength regime, the spectrum intensity peaks in the simulation are less 
prominent and the obtained frequency values tend to fluctuate and, for the whistler 
branch in particular, tend to undershoot the theoretical values. This is believed to be 
due to the finite grid size (see the Appendix). 

Polarization and Propagation Diagnostics 

The code should not only represent the correct frequencies of the modes described 
in the above, but also preserve correct relations for various wave phases: for example, 
the parallel propagating whistler wave is right-circularly polarized and the Alfven-ion 
cyclotron left-circularly. In the following simulations, we excite, at t = 0, either a 
linearly polarized wave or a left-circularly polarized wave by self-consistently 
perturbing the perpendicular magnetic fields and the fluid (particle) velocities, and 
follow the wave propagation. No random velocities associated with the particles are 
given. For theoretical comparison the ratios of the real to imaginary part of the y 
component of the magnetic tield at the wavelength of the initial perturbation and the 
ratio of the real parts of the y and z components of the fields are evaluated. Two 
phase angles obtained from the launched wave simulations, B= tan-‘(GB~/GB~) and 
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8, = tan-‘(GBF/GBr), are plotted versus time. The first is a measure of the 
propagation directions and the second indicates polarizations 

For the first case, we give a perturbation at t = 0 of the form 

6B, = EB, sin kx, 

c, sin kx, 
(17) 

with k, = (2n/Lx)m, m = 2 and E = 0.02. This choice of 6B, and 6v, ensures forward 
propagation of the disturbance. It also favors excitation of both the left and right 

tc,/A- 

FIG. 2. Phase diagnostics: linearly polarized forward propagating launched wave with wavenumber 
k = (2n/L,)tn, m = 2. (a) The temporal behavior of the simulation angle .QH = 
tan~‘(&I~/&J~). (b) The time evolution of the simulation angle B = tan ‘(6B%/6B:.). 
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polarizations, since Eq. (17) does not dictate 6B, and 6u,. Therefore, the perturbation 
will more likely be the linearly polarized forward propagating wave. Note that the 
eigenfrequencies of the two polarizations are close to each other for this wavenumber. 
The simulation results for 8 and 8, are shown in Fig. 2. 

Suppose that the perturbation, Eq. (17), induces the same amplitudes for the two 
polarizations. Then, the temporal behavior of the induced magnetic field oscillations 
for t > 0 are 

6B, = (~/2)B,[cos(kx - w-t) + sin(kx - o+ t)], 

619, = - (&/2)Bo[COS(kx - wp t) - cos(kx - w+ t)], 
(18) 

where w _ refers to the Afven-ion cyclotron frequency and w + the whistler frequency. 
We take a Fourier transform of the quantities in Eq. (18) in space with respect to the 
wavenumber k and calculate the ratios 

dB,Rp~i = t tan wH t, 

dByR/d~; = cot wL t, 
(19) 

where the superscripts R and I denote the real and imaginary parts of the transfor- 
mation and wL = (w+ - w-)/2 = do/2 and wu = (w, t w-)/2 (=kvA). It follows 
from Eq. (19) that 

e(t) = WH t, 

O,(t) = 742 - w,t E 742 - 1/2kv,(kv,/QJt. 

The angle 8 in Eq. (20) is a measure of forward propagation, since B increases 
(decreases) as t increases for forward (backward) propagation. Similarly, the 
appearance of the frequency wL in 8, is an indication of a mix of two polarizations. 
This is indeed what is observed in Fig. 2a for 8 and Fig. 2b for 6,. Furthermore, the 
period from Fig. 2a is obtained as r - 10 c;‘A while from Eq. (20) it should be 
t=2nw,‘- 10.7 c;‘A. Also from Fig. 2b, the period is 7 - 120 c;‘A, while from eR 
of Eq. (20) it should be 7: = 108.7 c; ‘A. Appearance of a structure at a shorter period 
(approximately that of the whistler) in Fig. 2b is due to the slightly unbalanced 
excitation of the two polarizations. 

To excite a left-circularly polarized wave, a run was carried out with the initial per- 
turbations 

6B, = EB, cos kx; dv, = - E(kv,Jw)c, cos kx, 

6B, = EB, sin kx; dv, = - .s(kv,Jw)c, sin kx, 
(21) 

with E = 0.02 and k = (27r/L,)m, m = 2. This perturbation establishes forward 
propagation. Such an initial perturbation should propagate the following wave: 

dB, = EB, cos(kx - w _ t), 

6B, = EB, sin(kx - w _ t). 
(22) 
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Fourier transforming in space yields 

6B;/dB; = - cot(o t), 
6B.; j6B.r = - cot(w _ t), 

245 

(23) 

so that 
e=e,=w_t+tr/2. (24) 

As time increases then, both 8 and 0, should increase, the first meaning forward 
propagation and the second left-circular polarization. This is indeed what is observed 
in Figs. 3a and b. Furthermore, the measured period is of the order of the Alfven 
period as predicted by theory. 

FIG. 3. Phase diagnostics: left-circularly polarized forward propagating launched wave with 
wavenumber k = (2n/L,)m, m = 2. (a) The temporal behavior of the simulation angle 
8, = tan-‘(@I~/@~). (b) The time evolution of the simulation angle 0 = tan-‘(GB~/&?:). 
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These results show that the one-fluid code with addition of the Hall term correctly 
propagates Alfven-ion cyclotron waves and whistler waves. 

IV. CONCLUSIONS 

A particle algorithm for performing computer simulations of collective plasma 
behaviors in the magnetohydrodynamic regime has been developed. It presents an 
extension of our previous particle magnetohydrodynamic codes; it only requires the 
addition of the Hall term, and yet enriches the physics by describing some of the 
electron dynamics without resorting to a two-fluid code. The algorithm is based on 
the approximations of a massless electron equation, quasi-neutrality, and negligible 
displacement current for the electron-ion fluid description of plasmas. This algorithm 
has been successfully implemented with full nonlinear dynamics. We veritied that the 
code allows both the Alfven-ion cyclotron waves and the whistler waves through 
dispersion relation, propagation and polarization checks. This code should have a 
variety of applications to the study of plasma phenomena for frequencies of the order 
of the ion gyrofrequency with almost the same computation speed and core 
requirement as the one-fluid magnetohydrodynamic code. This code dispenses with 
the information of the velocity distributions; however, it would not be difftcult to 
retain such features, since the code is based on particle methods and a fixed grid 
system. Such an algorithm, in general, would enrich the conventional Eulerian 
magnetohydrodynamic codes as well. 

APPENDIX 

For stability of the code, we primarily discuss the parallel propagating Alfven 
waves (whistler and ion-cyclotron waves). The magnetosonic waves in the perpen- 
dicular direction are unaffected by addition of the Hall term. In the low p plasma, the 
sound frequency is much smaller than the Alfven frequency, so that we neglect 
pressure effects in the stability analysis. The equation of interest is essentially 

B n+1=(B)"+ At V x(vx B)"+ At V x [&El x(V x B)]", 

where the angular bracket denotes spatial averaging required to stabilize the Lax 
algorithm and the superscripts denote the time step. 

The finite difference equation for magnetic fields may be schematically written 
after linearization as [6, 71 

B;;f = i(B$+,, j +B~i-l,j+B,“i,j+l +$i,j-1) 

At 
--“.x(B,“i+~,j-BB,“i-~,j 

At 
24 )-guy(B:i,j+l -BGi,j-I) 
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Byi’ =;(B:i+l,j + B:i,,j+ 1 + Bii, j+ I + Bfi, j- *I 

At At 
-,,c,(B:i+,,j-B:i-,,j)-24U,(B:,,j+, -Bti,j-l) 

- 2Bli.j + B,li- l,j), (A21 

where subscripts i and j indicate the grid coordinates. Here, we are concerned with 
the Alfven wave propagating along the x-axis parallel to the external magnetic 
field B,. We therefore neglected B,. By assuming that B~,j goes like 
exp[-inw At + i(k, id + k, jd)], we obtain 

CB, At 
gBv= (~(cosa+cos~)-iB,dtsina-i6,Atsin~]B,+2~(~o~a-1)B~, (A3) 

&B, At 
gB,=[f(cosa+cosP)-iB,Atsina-iB,AtsinP]B,-2~(cosa-l)B~, (A4) 

where g = ePiUA’, a = k, A, p = k, A, 13, = v,/A, and 8, = v,/A. 
The value of g is determined by the determinant of the above matrix equation: 

2&B, At 
g - [+(cos a + cos p) - i0, At sin a - i0, At sin /I], - 7 (cosa- 1) 

0 = det 
2&B, At 

2 (COS a - 1), g - [$(cos a + cos /I) - 83, At sin a - i0, At sin P] 
A 

If we set 6 = 0 (no Hall term), we obtain conventional stability criterion [6] for the 
Lax algorithm by demanding ] g/ < 1: 

3 ‘/*A 3 “*A 
At G (us; + uy2 = (u:, + cy2 . 046) 

Let us now consider the Hall term effect on the code stability in the Lax algorithm. 
For simplicity, we drop the term involving 13, and 8,. Then, the amplification factor g 
from Eq. (A5) is 

ia’2B, At 
g=i(cosa+cos/?)* A2 (cosa - 1). 647) 

The stability condition for the code is 

IgIG 1 W) 
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for all wavenumbers. This reads 

F(q = cos(k, A)] = ; [cos(k, A) + cos(k, A)]2 

+ 
4Li*Bf, At2 

A4 
[l -co~(k,A)]~- 1 GO. (A9) 

For the parallel propagating Alfven wave, F(q) in Eq. (A9) is zero at 
q = cos(k, A) = I and F(q) is concave [F”(q) > 0] over the period 0 < q < 1. The 
necessary and sufficient condition for stability, therefore, becomes F(q = 0) < 0. This 
leads to the stability criterion for the Lax algorithm with the Hall term 

A&$.!&=~&, 
4 vAIRi 

(AlO) 
0 

where q = 0 is taken at k, A = 7r/2. In general, the stability is determined by the more 
stringent of the two [Eqs. (A6) and (AlO)]. I n our case, Eq. (A6) gives At < 0.21 and 
Eq. (AlO) demands At < 0.16 with v, = 3c, and Qi = 3 c,/A; we have, therefore, the 
theoretical limit At < 0.16. The code in our simulation runs is stable at At = 0.15 and 
unstable at t = 0.2, in reasonable agreement with the present analysis. 

In order to analyze the finite size effects we derive the dispersion relation from 
Eqs. (Al) and (A2). In a manner similar to that for deriving Eq. (A5), we obtain 

0 = det 
-iw--i(cos a-l)-f(cos /3--l)+i8, At sin a+iO, At sin p, 

2&B, At 
- (cos/3-1) A2 

-2diB, At 
A2 

(cos a-l), ioG(cos a-1)--~(~0~/?-1)+i~, At sin a+iO, At sinp 

(All) 
Here we have put By,) ’ - By, j = - iwBy, j. A quadratic equation, Eq. (Al l), may be 
solved as 

w = 8, At sin a + 8, At sin ,I3 f v (1 - cos a) 

- it[(l - cos a) + (1 - cosp)]. (Al?) 

For example, the e-’ damping time of a longest wave in a 64 grid system is 400 A/c,. 
The first two terms give the Alfven disperion at small wavenumbers as kxvA (or 
k,,cA). The third term originates from the Hall term and yields the frequency splitting 
into the whistler and ion-cyclotron waves. Note that since we neglected the pressure 
effect in the low /3 plasma, the compressional effect is absent in Eq. (A12). The last 
term is purely imaginary and is a damping term due to the finite differencing. 

Let us consider the first term. As the wavenumber k, increases, the linear 
dispersion kxvA bends over and approaches a finite number as k, approaches the 
Brillouin zone (k, = k,, E 7r/2A). This is a typical Brillouin effect. Moreover, we 
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have the effect of the third term. For the upper branch (whistler wave), the bending 
effect due to the third term is in the complementary direction, while for the lower 
branch (ion-cyclotron wave), it adds up. It is, however, noted that the Hall term 
should give rise to a frequency splitting proportional to k: in a “continuous” plasma 
in the small wavenumber regime. The finite differencing of the Hall term gives this 
feature correctly at k, < kBZ, but the frequency splitting becomes proportional to k, 
as k, increases away from k, = 0 towards k, 5 k,,. Thus, the linear tendency of the 
frequency split Aw(k,) in larger wavelengths is the finite differencing effect on the 
Hall effect in the code. Also note that these modes with heavy dispersive or Brillouin 
effects suffer strong damping because of the fourth term in Eq. (A12), which helps 
alleviate the unphysical dispersion that comes into play in physics runs of the code. 

Finally, let us discuss numerical effects on the pressure term. The pressure term is 
calculated with the Fast Fourier Transform algorithm [5]. From the equation of 
motion, the sound wave equations for an isothermal plasma are 

d 
p dt v = - 

I 
dr’f(r - r’) V’P(r’) (A13) 

and 

P(r) = T [ dr’f(r - r’) n(r’), (A14) 

where T is the plasma temperature. In Fourier space Eqs. (A13) and (A 14) read 

-iou = icikf(k)2 n(k) 6415) 

after linearization, where c, is the sound speed and f(k) is the form factor 
exp(-k2a2/2) for a Gaussian-shaped particle with a size a. With the help of the 
continuity equation, we obtain the dispersion relation for the sound wave as 

co2 = k*ci exp(-k2a2). (‘416) 

If a N A, which is a conventional choice, the numerical dispersion arising from the 
finite-sized particle effect is of the same order of magnitude and character as those 
due to the finite differencing discussed above: both tend to bend the linear dispersion 
over in the neighborhood of the Brillouin zone boundary. 
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